《反比例》教学设计

时间:2025-12-18 17:16:07
《反比例》教学设计

《反比例》教学设计

作为一名无私奉献的老师,常常要根据教学需要编写教学设计,借助教学设计可以提高教学效率和教学质量。那么应当如何写教学设计呢?以下是小编精心整理的《反比例》教学设计,欢迎阅读,希望大家能够喜欢。

《反比例》教学设计1

教学要求:

使学生进一步理解和掌握正、反比例中每个概念的含义;更熟练地判断两种相关联的量是不是成比例的量。如果成比例,成什么比例。

进一步提高解决简单实际问题的能力。

教学过程:

提出本课复习题

基本概念的复习

什么叫两种相关联的量?

下面两种相关联的量哪些量成比例?成比例的是成正比例还需成反比例?

什么样的两种量成正比例关系?什么样的`两种量成反比例关系?

成正比例关系的量与成反比例关系的量有什么异同点?

应用练习

完成教材97页的“做一做”。

第3题在完成时可先把题中的等式变一变形,像y=8x变成y/x=8;把y=8/y变成xy=8,这样判断起来就方便了。

巩固练习

完成教材99页第6~7题。

全课总结(略)

教学目标:

使学生进上步理解和掌握比和比例的意义与性质。

区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。

教学过程:

讲述本课复习课题并板书

基本概念的复习

比和比例的意义与性质。

什么叫比?什么叫比例?(就学生所举的例子再让学生说说比和比例中各部分的名称),比的后项为什么不能是0?

比和分数、除法有什么联系?

说说比的基本性质的比例的基本性质?

比的基本性质与比例的基本性质各有什么用处?

看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?

完成教材95的“做一做”。

结合第3题让学生说说什么叫做解比例?根据是什么?

示比值和化简比。

独立完成教材96页上的题目。

说说求比值与化简比的区别?

(求比值是根据比的意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。

看书中的表,总结方法。

完成教材96页的“做一做”

比例尺

问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。

2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?

比例尺除写成数字化形式处,还可怎样表示?

完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)

练习巩固

完成教材十九页第1~4题。

全课总结(略)

《反比例》教学设计2

目标:

1、使学生理解反比例函数的概念;

2、使学生能根据问题中的条件确定反比例函数的解析式;

3、能结合图象理解反比例函数的性质。

4、培养学生用 数形结合的思想与方法解决数学问题。

重点:反比例函数的图象的画法及性质

难点:

1、选取适当的点画反比例函数的'图象;

2、结合反比例函数图象说出它们的性质。

教学过程:

一、复习引入

1、什么叫一次函数?什么叫正比例函数?写出它们的一般式。它们有何关系?

2、正比例函数的图象与性质:

正比例函数 反比例函数

解析式 y=kx(k0) y=k/x或(k0)

图象经过(0,0)与(1,k)两点的直线 双曲线

当k0时,图象经过一、三象限;当k0时,图象经过二、四象限;当k0时,图象经过一、三象限;当k 0时,图象经过二、四象限;

性质:当k0时,Y随着X的增大而增大;当k0时,Y随着X的增大而减小;当k0时,Y随着X的增大而减小;当 k0时,Y随着X的增大而增大;

3、学学过反比例关系下面我们举几个例子

例1 矩形的面积是12cm2,写出矩形的一边y(cm)和另一边x(cm)之间的用函数关系式。

例2 两个变量x和y的乘积等于—6,写出y与x之间的函数关系式。

4、提出问题:

上面两个问题从关系式看,它们是不是正比例函数?为什么?

答:不是,因为不符合正比例函数y=kx的形式,它们的关系是反比例关系。

二、讲解新课

1、反比例函数的定义

一般地,(k为常数,k0)叫做反比例函数,即y是x的反比例函数,也可以写成

例3、知函数y=(m2+m—2)xm —2m—9是反比例函数,求m的值。

例4、已知变量y与 x成反比例,当x=3时, y=―6;那么当y=3时,x的值是();

例5、已知点A(―2,a)在函数的图像上,则a= ;

2、反比例函数的图象

例6、画出反比例函数的`图象(师生分别画图)

步骤:(1)列表(强调x不能取0,为保证其图的对称性,x要取适当的值)

(2)描点(准确性要高)

(3)连线(用一条平滑曲线根据自变量由小到大的顺序把这些点连结起来)

归纳:

(1)反比例函数的图象由两条曲线组成(),叫做双曲线。

(2)讨论反比例函数图象的画法:

① 反比例函数的图象不是直线,两点法是不能画的,它的图象是双曲线,图象关于原点成中心对称。列表时自变量的值可以选取绝对值相等而符号相反的数(如1,2等等)相应地就得到绝对值相等而符号相反的对应的函数值。 这样即可以简化计算的手续,又便于在坐标平面内找到点。

② 反比例函数的图象的两支都无限地接近但永远不能达到x轴和y轴,所以图象与x轴y轴没有交点。如果发现画的图象无限接近坐标轴后,又偏离坐标轴,这也是错误的,教师可在课堂上演示,并说明错误的原因。

③ 选取的点越多画的图越准确;

④ 画图注意其美观性(对称性、延伸特征)

3、反比例函数的性质

再让学生观察黑板上的图,提问:

(1)当()时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化?

(2)当()时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化?这 ……此处隐藏18771个字……学生理解反比例的含义往往比较困难。为此,教材密切联系学生已有的生活经验和学习经验,创设了三个情境,让学生体会生活中存在大量相关联的量,它们之间的关系有着共同之处,使学生从常量的世界进入了变量的世界,开始接触一种新的思维方式,从而引发学生的讨论和思考,并通过对具体问题的讨论,使学生认识成反比例的量以及反比例在生活中的广泛存在。

【学情分析】

学生已经学习了“变化的`量”和“正比例”的有关知识,对比例知识有了初步的了解,因此,在教学时依据教材特点,从学生的实际生活经验和知识水平出发,采用“小组合作交流”的教学方法,让尽可能多的学生主动参与到学习过程中,通过独立思考,合作交流,让学生在原有正比例知识经验的基础上,积极主动去建构新知,最大限度充分发挥学生主观能动性,通过学生观察、思考、感知、交流、比较、归纳等数学教学活动,探究新知,体验到成功的愉悦。

【教学目标】

1、知识与能力:

(1)结合丰富的实例,认识反比例。

(2)能根据反比例的意义,初步判断两个相关联的量是不是成反比例,并能解决生活中的实际问题。

2、方法与途径:在互动、探究的合作交流活动中,培养学生观察、思考、比较、归纳概括的能力。

3、情感与评价:使学生在自主探索合作交流中体验成功的愉悦,感受反比例关

系在生活中的广泛应用。

【教学手段】

运用多媒体辅助教学

【教学重点】

理解反比例的意义,掌握判断两种量是否成反比例的方法。

【教学难点】

通过具体情境认识成反比例的量,掌握判断两种量是否成反比例的方法。

【教学准备】

多媒体课件。

【教学过程】

一、复习铺垫,引入课题(出示课件)

师:前面我们学习了正比例的有关知识,你们还记得吗?现在老师想考考大家,同学们有没有信心?

1、复习:判断下面各题中两种量是否成正比例。

(1)文具盒的单价一定,买文具盒的个数和总价

(2)一堆货物一定,运出的和剩下的

(3)汽车行驶的路程一定,行驶的速度和时间

2、谈话引入:汽车行驶的路程一定,速度和时间这两种相关联的量不成正比例,那么它成不成比例呢?又会成什么比例?这就是今天要解决的问题。(出示课题:反比例)今天老师就和同学们一道共同探讨反比例的变化规律。

〔设计意图〕通过复习,巩固学生对正比例意义的理解。学生从中发现第3小题不成正比例,那么它成不成比例呢?又会成什么比例?引入课题。通过设疑不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为学习新知作铺垫,也为自主探究新知创造了条件并激发了积极的情感态度。〕

二、教师引导,自主探索

(一)初步感知理解两个变化关系的不同。(出示情境(1))

1、师:我们来看“加法表”格,同学们先来观察一下:

①图中蓝色部分表示的是哪个数字?

②哪两个量发生了变化?哪个量是固定不变的?

(教师引导学生观察分析,学生自己总结出:和不变,一个加数随另一个加数的变化而变化,所有和为12的数都在同一条直线上。)

2、引导学生观察分析“乘法表”中两个量的变化关系(学生感知积不变,一个乘数随另一个乘数的变化而变化,积为12 的数成一条曲线)

3、小结:由此可见,对于“加法表”和“乘法表”中的两个变量,都是一个量变化,另一个量也随着变化,但是它们的变化关系是不同的。“加法表”表示的是和一定两个加数之间的关系,而“乘法表”表示的是积一定两个乘数之间的关系。所有和为12的数都在同一条直线上,积为12 的数成一条曲线。

(二)探索理解反比例的意义。

师;这两种关系是不是今天我们所学的反比例呢?这个问题放在后面再解答,请同学们看题目:

(1)教师引导学生观察表格,把表格填写完整。

(2)观察发现:一行一行地看,发现了什么?再一列列地看,又发现了什么?

(3)寻找规律:你是怎么知道路程不变的?用表中的数据说明。(同桌合作交流)

学生讨论反馈:10×12=120 40×3=120 80×1、5=120 …

(4)小结:速度×时间=路程(一定)

2、出示情境(3)(小组合作交流)

师:请同学们在小组内互相讨论交流,并围绕这三个问题进行讨论。

(1)填表:

(2)表中有哪两种量?

(3)分的杯数是怎样随着每杯的果汁量变化的?

(4)它们的变化规律是什么?用表中的数据说明。

每杯的果汁量×分的杯数=果汁总体积(一定)

3、学生合作交流比较情境(2)和情境(3)的共同点,比较概括反比例的概念。

(1)比较一下情境(2)和情境(3),请同学们在小组中讨论一下,互相说说这两个例题有什么共同的特征?

(2)学生归纳概括反比例意义的概念:

反比例概念:两种相关联的量,一种量变化,另一种量也随着变化如果这两种量中相对应的两个数的积一定,这两种量之间成反比例关系。

4、学生归纳总结判断两个量是不是成反比例的方法:判断两个量是不是成反比

例,主要是看它们的积是不是一定的。

(三)练习:讨论“加法表”和“乘法表”中两个量是否成反比例。

(设计意图:通过让学生观察情境(二)和情境(三),在学生思考、交流合作、比较的基础上,归纳反比例的概念。归纳总结判断两个量是不是成反比例的方法。最后又对“加法表”和“乘法表”中两种关系进行分析讨论,解决了开始提出的问题,巩固了本节课的教学内容)

三、模仿应用,解决问题

1、判断下面每题中的两个量是否成反比例?并说明理由。(出示课件)指名学生口答,要求说出数量关系式判断。

(1)煤的总量一定,每天的烧煤量和能够烧的天数。

(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。

(3)生产电视机的总台数一定,每天生产的台数和所用的天数。

(4)跳高的高度和她的身高。

(5)苹果的单价一定,购买苹果的数量和总价。

2、找一找生活中还有哪些成反比例的例子?

(设计意图:通过五道练习题,运用正反比例的知识判断两种量是不是成反比例关系,进一步加深了对反比例关系的认识,又巩固了正比例的知识。最后又通过找一找环节,学生说出生活中成反比例的例子,让学生感受到了反比例关系在生活中的广泛应用。)

四、全课总结,深化提高

你们又有了什么新的收获?把你们的收获告诉大家。

(设计意图:让学生反思本课学习所得,把自己的收获告诉同学。这一过程,是知识再现的过程,又是再次学习、巩固的过程。)

五、布置作业:p26、1、2、3题。

《《反比例》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式