鸡兔同笼教案

时间:2025-10-08 09:58:07
鸡兔同笼教案

鸡兔同笼教案

在教学工作者实际的教学活动中,就难以避免地要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。如何把教案做到重点突出呢?以下是小编整理的鸡兔同笼教案,希望能够帮助到大家。

鸡兔同笼教案1

一、教学目标:

1、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

2、应用假设的数学思想,在解题中数形结合,提高学生分析问题和解决问题的能力;

3、在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。

二、教材分析

本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一列表法、跳跃式列表法、取中列表法等来解决问题。学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

三、学校及学生状况分析

五年级学生在三年级时已初步学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一列表法解决问题,还有一些学生在校外的奥数班中已经学习了相关的内容。因此,教学在这一内容时,学生的程度参差不齐。本班的学生思维活跃,敢想,敢说,有一定的小组合组经验。

四、教学设计

(一)创设情境

师:今天这一节课,我们要共同研究鸡兔同笼问题。(板书:鸡兔同笼)你们知道鸡兔同笼是什么意思?

生:鸡兔同笼就是鸡兔在一个笼子里。

(媒体出示课本第80页的情景图)

师:请你猜一猜,图中大约有几只兔子,几只鸡?

生1:我猜大约是7只,兔子5只鸡。

生2:不一定。因为有一棵树把鸡和兔子挡住了,所以我不知道各有几只。

(二)探求新知

师:如果告诉你:鸡兔同笼,有20个头,54条脚,鸡、兔各多少?能求出几只兔子,几只鸡吗?(媒体出示题目的条件)

师:想一想,要解决这个问题可以用什么方法?想好了,可以写在作业纸上。

师:请同学们把自己的想法在小组内交流一下,看那个小组的方法多样。

师:哪个小组说说你们的想法?

小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)先假设有1只鸡,19只兔子,脚就有78条。脚太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。

师:还有哪些小组采用不同的列表法?

小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从2只鸡,18只兔直接跳到10只鸡,10只兔。最后也得到了13只鸡,7只兔。

小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比较简便。

师:这三个小组的同学都采用了列表的方法来解决问题,但同学们想一想,为什么要列表呢?

生1:列表可以帮助我们一一举例,从中找出需要的答案。

生2:列表也就是运用假设法,通过逐步的假设,最终找到符合条件的答案。

师:那么,这三种列表的方法有什么不同呢?

生3:我认为第一小组的列表方法的特点是逐一列表,这样不容易遗漏答案。

生4:虽说第一小组的方法可以完全地列出全部的答案,但比较麻烦。我认为第三组的方法比较好,可以根据题目的根据情况,确定假设的范围,这样可以很快寻找到需要的答案。

师:这两位同学说得都很有道理,其实同样选择列表的方法,我们因根据题目的实际条件,选择适当的方法,这样可以既快又准确地寻找到我们需要的答案。

(三)解决问题

师:根据刚才的讨论,下面两道题目,同学们可以用列表的方法独立地尝试解决。

媒体出示两道题

1、鸡兔同笼,有23个头,66条腿,鸡、兔各几只?请你列表的方法解决。

2、老师带51名学生到公园划船。一条大船坐6人,一条小船坐4人,他们租了大船、小船各几条?

(学生练习后,教师组织全班进行交流。交流过程略)

(四)学习总结

师:通过今天的学习,你有哪些收获?

五、教学反思

1、充分调动学生的积极性

当新的问题提出后,我并没有急于讲解如何做的方法,而是先让学生独立思考,再在小组内交流,最后全班共同研究讨论。使同学们在民主、和谐的氛围中开拓了思维,实现了运用多种方法解决问题的目的。

2、关注每一个同学的发展。

由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在同样的列表中,学生的认知水平也有一定的层次。但在教学的.过程中,我并没有提出统一的要求,允许不同的学生采用不同的解题方法。在交流时,有些学生用逐一列表的方法,也没去指责他们,而是肯定他们想出好的方法;对于比较优秀的学生,则在课中请他们总结根据题目的条件选择适当方法的优点。这样做的目的,不同的学生在同一节课中就会都有不同程度地提高。

六、案例点评

本节课有以下几个特点:

1、本节课从学的角度安排教学过程、呈现学习内容、提供操作材料,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。因此,使学生的主体意识和探究精神得到培养,创新潜能得到开发。

2、让学生获得亲自参与探究学习的积极体验。探究性学习的过程是情感活动的过程,让学生自主参与类似于科学家研究的学习活动,获得亲身体验,逐步形成一种在日常学习与生活中喜爱质疑、乐于探究、努力求知的心理倾向,激发探究和创新的积极欲望。

鸡兔同笼教案2

教学目标:

1、知识与技能

初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题,结合图解法理解假设的方法解决鸡兔同笼问题。

2、过程与方法

通过画图分析、列表举例、假设计算等方法理解数量关系,体会数形结合的方便性,体验解决问题方法的多样化,提高解决实际问题的能力。

3、情感、态度与价值观

培养学生的合作意识,在现实情景中,在交流的过程中,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,受到多种数学思想方法的熏陶,进而让学生体会数学的价值。

教学重点:

用画图法和列表法解决相关的实际问题。

……此处隐藏22183个字……p>请同学们轻声读题,看看题里告诉我们什么信息,要解决什么问题?

生:读题

师:现在就请你来解决这个问题,你想怎样解决?把你的想法和小组内的同学说一说。

生:我想我能猜出来。一次猜不对,多猜几次就能猜对。

师:按你的意思就是随意的猜,为了不重复,不遗漏,我们可以列表按顺序推算。(板书:列表法)

师:还有其他方法吗?

生:我想用方程法也能解决。(板书:方程法)

生:要是笼子里光有鸡或光有兔就好算了,可这笼子里却有两种动物,我还没想好怎么算。

师:那我们就不妨按笼子里只有鸡或只有兔来思考,假设笼子里全是鸡或全是兔,看脚数会有什么变化,说不定从中你们就能找到解题的思路呢。(板书:假设法)

师:还有别的方法吗?那这些方法行不行呢?下面就请同学们以小组为单位,对你们感兴趣的方法进行尝试验证一下吧。

生:在小组内尝试各种方法。

师:经过上面的研究学习,你们都尝试运用了哪种方法呢?下面以小组为单位进行汇报。

生1:我们小组用列表法找到了答案,有3只鸡,5只兔。

师:把你们研究的结果拿来让大家看看。这样按顺序推算,对于数据小的问题解决起来很方便,不过一旦数据比较大,比如笼子里的鸡和兔有100只,200只,甚至更多,再用这样的办法怎么样?

生:很麻烦。

师:是啊,那要花费很长时间。哪个小组还想汇报?

生:我们小组用方程法计算的。(生说计算过程,师板书过程。)

师:我们看这个方程列得是否正确?4X表示什么?2(8-X)表示的是什么?兔脚数+鸡脚数=什么?这就是列这个方程所依据的数量关系。谁能把这个数量关系完整的说一遍?

生:说数量关系。(鸡脚数+兔脚数=26只脚)

师:根据这个数量关系你能想到另两个数量关系吗?

生:叙述另外两个数量关系。(26只脚-鸡脚数=兔脚数26只脚-兔脚数=鸡脚数)根据这两个数量关系你又能列出哪两个方程呢?

生:汇报师板书两方程。

师:除了可以设兔有X只,还可以怎样设?

生:还可以设鸡有X只。那兔就有(8-X)只。

师:对,那根据什么数量关系你又能列出怎样的方程呢?

生:汇报,根据鸡脚数+兔脚数=26只能列出方程2X+4(8-X)=26根据26只脚-鸡脚数=兔脚数能列出26-2X=4(8-X)根据26只脚-兔脚数=鸡脚数能列出26-4(8-X)=2X。

师:同学们看根据不同的数量关系我们能列出这么多的方程,但是同学们要注意用方程法解决问题时必须要找准数量关系。

师:除了这两种方法,假设法有运用的吗?

生:汇报。我们小组是把笼子里的动物都看做鸡。(板书:全看作鸡)

生:我们是这样想的。假设笼子里都是鸡,应有脚8×2=16只,比实际少了26-16=10只,一只兔少算2只脚,列式为:4-2=2只,所以能算出共有兔10÷2=5只鸡就有8-5=3只。(生说师板书计算过程)

师:这位同学说的你们听明白了吗?结合算式进行明理。明确每一步算式各表示什么意义。

师:这种方法都明白了吗?结合课件图画进行解释质疑。

师解释:刚才我们把笼子里的动物都看做鸡(课件图画上显示)那么笼子里共就应该有多少只脚?

生:16只。

师:实际上笼子里有26只脚,怎么会少了10只脚呢?(课件显示)

生:每只兔子少算2只脚。

师:一共少算10只脚,每只兔子少算2只脚,所以有5只兔子,3只鸡了。

师:把笼子里的动物都看做鸡,你们会算了,要是把笼子里的动物都看做兔,(师板书:全看作兔)又该怎样思考呢?你能参照前面的方法自己试着做一做吗?

生:试做。

师:刚才已经假设都是兔的同学,再按假设全是鸡的情形算一算。

生:练做。

师:谁来说说假设全是兔该怎么算?

生:假设笼子里都是兔,就应有脚8×4=32只,比实际多了32-26=6只。一只鸡多算2只脚,4-2=2只。就能算出共有鸡6÷2=3只。兔就有8-3=5只。(生说师板书计算过程。)

师:你们也都算上了吗?师解释:要是都是兔的话,就有32只脚,而实际有26只脚,为什么会多出6只脚呢?(课件示)

生:每只鸡多算2只脚。

师:一共多算6只脚,每只鸡算2只,所以有3只鸡,5只兔。

师:还有运用其他方法的吗?

师:同学们看,通过上面的探究学习,我们共找到几种解决鸡兔同笼问题的方法?(三种)哪三种?(列表法,方程法,假设法)你们能说说这三种方法各有什么特点吗?

生汇报:列表法适合于数据小的问题,数据大了就不适用了。

方程法思路很简捷,但解方程比较麻烦。假设法,写起来简便,但思路很繁琐

师:那以后我们再解决鸡兔同笼问题时就要根据具体情况灵活选择计算方法。

三巩固练习

师:现在就请你来解决那道数据较大的问题你们能解决吗?

生:独立解答后全班交流。

师:哪位同学愿意说说你是怎么解决这个问题的?

生:汇报不同的算法。(学生边汇报边把计算方法展示在实物展台上)

师:刚才我们用自己的办法解决了这个问题,你们想知道古人是怎么解决这个问题的吗?我们一起来看一看。(课件示)

师:古人的办法很巧妙吧?如果大家对这种解法感兴趣,课后可以再研究。

师:在一千五百年前,我国的古人就发明出这么的数学问题,一直流传到现在,他们还想出那么巧妙地解决办法,为我们后人留下了宝贵的知识财富,你想对他们说点什么吗?

四全课总结

师:通过这节课的学习你有什么收获?

生:我学会用……方法解决“鸡兔同笼”问题。

师:今天通过大家的自主探索,找到了多种解决“鸡兔同笼”问题的方法。方程法和假设法应用得都比较广泛。生活中我们还会遇到类似“鸡兔同笼”的问题,比如有些租船问题,钱币问题等。下节课我们就应用这些方法去解决那些实际问题。

板书设计:

鸡兔同笼

列表法

方程法假设法

解:设有兔X只,鸡就有2(8-X)只。全看作鸡

4X+2(8-X)=268×2=16(只)

2X+16=2626-16=10(只)

X=54-2=2(只)

8-5=3(只)10÷2=5(只)

答:有5只兔,3只鸡。8-5=3(只)

26-4X=2(8-X)全看作兔

26-2(8-X)=4X8×4=32(只)

2X+4(8-X)=2632-26=6(只)

26-2X=4(8-X)4-2=2(只)

26-4(8-X)=2X6÷2=3(只)

8-3=5(只)

《鸡兔同笼教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式