
《三角形的面积》教案
作为一名为他人授业解惑的教育工作者,常常要根据教学需要编写教案,教案有助于学生理解并掌握系统的知识。那么优秀的教案是什么样的呢?下面是小编为大家收集的《三角形的面积》教案,欢迎阅读,希望大家能够喜欢。
《三角形的面积》教案1一、创设情境,引入课题
裁缝店的王阿姨接到一笔订货单:东风小学要在一年级新生中发展150名少先队员,需要做150条红领巾,要买多少布料呢?这可难坏了王阿姨,同学们,你们能帮她解决这个问题吗?怎么解决?
那么,做一条红领巾必须知道什么?(面积)
红领巾是什么形状的?(三角形)
怎样才能算出三角形的面积呢?这节课我们就来共同探究三角形面积的计算方法。(板书课题)
[设计意图]通过学生熟悉的情境,使学生产生解决问题的欲望,并能积极主动的投入到探究活动中。
二、探究新知
1、复习平行四边形面积公式的推导方法
请同学们回忆一下前面我们学过的平行四边形的面积是怎样推导出来的?(学生口述)
2、三角形面积公式的推导
活动一:
请同学们拿出准备的三角形,仿照我们推导平行四边形面积的方法,试着拼一拼,看能不能推导出三角形的面积公式。动手前,注意老师提出的这几个问题:
你选择两个怎样的三角形拼图?能拼出什么图形?拼出的图形的面积你会算吗?拼出的图形与原来的三角形有什么联系?(屏幕出示)
(1)学生分小组进行操作实践活动
(2)汇报交流操作结果(请学生将自己的拼图贴于黑板上,对照拼图进行汇报交流,不完整的地方,小组内其他同学补充。教师根据学生的汇报出示相应的课件)
拼法一:用两个完全一样的直角三角形拼成一个长方形,三角形的一条直角边(底)相当于长方形的长,另一条直角边(高)相当于长方形的宽,长方形的面积相当于三角形面积的两倍,因为长方形的面积=长宽,所以,三角形的面积=底高2。
拼法二:两个完全一样的锐角三角形拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,平行四边形的`面积相当于三角形的2倍,平行四边形的面积=底高,所以三角形的面积=底高2。
学生汇报,教师板书:
平行四边形的面积=底高
三角形的面积=底高2
拼法三:两个完全一样的钝角三角形拼成一个平行四边形。
拼法四:两个完全一样的直角三角形还可拼成一个平行四边形。
拼法五:两个完全一样的等腰直角三角形可拼成一个正方形。
教师概括:通过动手我们发现,两个完全一样的三角形都可以拼成一个平行四边形(或长方形或正方形)这个平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,因为每个三角形的面积等于拼成的平行四边形面积的一半,所以,推出:
三角形的面积=底高2
[设计意图]学生在平行四边形面积推导的基础上,运用转化的数学思想,通过动手操作,推导出三角形的面积公式。在操作过程中,教师把自主学习的权利还给了学生,使学生学得积极主动。在操作、观察、分析、推理、概括的过程中,培养学生的合作能力、动手能力、解决问题的能力。
活动二:
除了刚才我们用的三角形面积公式推导方法外,请同学们再用剪拼的方法进行推导。
(1)小组讨论:怎样剪拼可以推导出三角形的面积公式?
(2)交流汇报(请学生展示剪拼过程)
中线
中线
平行四边形的面积=底高
(三角形的面积)(三角形的底)(三角形高的一半)
三角形的面积=底高2
活动三:
老师还会一种推导方法,叫折叠法,看哪位同学最聪明,能用这种方法推导出三角形的面积公式来。
学生思考,得出结果,汇报交流并演示折叠过程。
教师讲解,并用课件演示。
长方形的面积=长宽
(三角形的面积)(三角形的底2)(三角形高的2)
[设计意图]让学生体会到解决问题方法的多样性。这对有余力的学生是一种提高,进一步培养了学生的创新意识,开阔了学生的思维,使学生也体会到了学习数学的乐趣。
3、教师小结:我们用拼图法、剪拼法、折叠法的方法把三角形转化成学过的图形,推导出了三角形的面积公式。那么,如果用字母a表示三角形的底,h表示三角形的高,S表示三角形的面积,你能用字母表示三角形的面积公式吗?
S=ah2(板书)
4、公式运用
出示例题:王阿姨计划做的红领巾的底是100㎝,高是33㎝,红领巾的面积是多少?
(1)学生尝试完成
(2)交流做法和结果
S=ah2
=100332
=33002
=1650㎝2
三、巩固拓展
1、算出下面每个三角形的面积。
2、这些道路交通警示标志你认识吗?算一算一块标志牌的面积大约是多少平方分米?
176㎡
3、已知三角形的面积和底,求高。
4、下图中哪个三角形面积相等?(两条虚线互相平行)你还能画出和他们面积相等的三角形吗?
[设计意图]通过有层次的练习,使学生能够较好的巩固所学知识,开拓思维。2小题的设计又对学生进行了交通安全教育。
四、小结。
今天我们学习了三角形面积的计算方法,你都有哪些收获?
《三角形的面积》教案2教学目标
知识与技能:
探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题
过程与方法:
是学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
情感态度与价值观:
让学生在探索活动中获得积极的情感体验,进一步培养学生学习的兴趣。
教学重难点
教学重点:
理解并掌握三角形面积的计算公式
教学难点:
理解三角形面积计算公式的推导过程
教学工具
多媒体课件、三角形学具
教学过程
教学过程设计
1 创设情境
师:我们学校有一批小朋友要加入少先队了,学校为他们做了一批红领巾,要我们帮忙算算要用多少布。同学们有没有信心帮学校解决这个问题(屏幕出示红领巾图)
师:同学们,红领巾是什么形状的
生:三角形的
师:你们会算三角形的面积吗这节课我们就一起来研究,探 ……此处隐藏13711个字……形ABD和三角形ADC是两个等底等高的三角形,所以它们的面积相等,三角形ADC的面积占三角形ABC的一半,面积是平方厘米。在三角形ADC中,三角形ADE和三角形CDE等底等高,所以三角形ADE的面积占三角形ACD面积的一半,是平方厘米。在三角形ADE中,AEF和DEF是两个等底等高的三角形,它们的面积相等,所以三角形DEF的面积相当于三角形ADE的一半,即平方厘米。
(平方厘米)
答:三角形DEF的面积是3平方厘米。
《三角形的面积》教案14教学目标:
1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。
2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。
教学重点:
理解并掌握三角形面积的计算公式
教学难点:
理解三角形面积公式的推导过程
教学过程:
一、复习导入:
复习平行四边形面积公式的推导过程
二、探究新知:
1、教学例4:
师:仔细观察这3个平行四边形,请说出如何求每个涂色的三角形的面积?先自己想,随后在小组中交流。
学生讨论后汇报(平行四边形的面积÷2)
师:为什么可以用“平行四边形的面积÷2”求出每个涂色的三角形的面积?三角形与平行四边形究竟有怎样的关系?三角形的面积有应当如何计算?今天继续运用“转化”的方法来研究三角形面积的计算。(板书课题:三角形面积的'计算)
2、教学例5:
(1)出示例5:
师:用例5中提供的三角形拼成平行四边形。(注意:组内所选的三角形都要齐全)
(2)小组交流:
你认为拼成一个平行四边形所需要的两个三角形有什么特点?
要使学生明确:用两个完全一样的三角形可以拼成一个平行四边形。
(3)测量数据计算拼成的平行四边形的面积和一个三角形的面积并填表。
师:如何计算一个三角形的面积?从表中可以看出三角形与拼成的平行四边形还有怎样的关系?(小组交流)
得出以下结论:
这两个完全一样的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成一个平行四边形。
这个平行四边形的底等于三角形的底
这个平行四边形的高等于三角形的高
因为每个三角形的面积等于拼成的平行四边形面积的一半
所以三角形的面积=底×高÷2
板书如下:
平行四边形的面积=底×高
2倍一半
三角形的面积=底×高÷2
(4)用字母表示三角形面积公式:S=ah
三、巩固练习:
1、完成试一试:
2、完成练一练:
(1)先让学生回忆拼得过程,再回答。
(2)要让学生说清是如何想的。
3、完成练习三第1—3题:
四、课外延伸:
介绍“你知道吗”
五、全课总结:
师:通过今天的学习有哪些收获?
板书设计:三角形面积的计算
《三角形的面积》教案15【教学内容】教材第134页复习第12~15题。
【教学目标】
【教学重点 掌握求平行四边形、三角形和梯形的面积计算公式,会进行面积单难点】位的换算。
【教学过程】
一、揭示课题
我们今天复习平行四边形、三角形和梯形面积的计算以及土地面积的有关知识。通过复习使学生进一步理解和掌握求平行四边形、三角形和梯形的面积计算,会进行土地面积计算和面积单位间的换算。
二、复习面积单位
1、(1)我们学过哪些面积单位?并按一定州顺序排列。
(2)每相邻两个面积单位间的进率各是多少?
2、练习做期末复习第12题。
学生做,并说计算过程。
三、复习平行四边形、三角形和梯形的面积计算及其联系
1、说一说这三种图形面积计算公式是什么?并说一说每个图形的面积是怎样推导出来的?
2、我们在学习平行四边形、三角形和梯形面积的计算时,都是把它们变成已学过的'图形,这种学习方法叫做什么?(转化),以后学习其他图形的面积时,还是要用到这种方法。
3、把长方形、正方形、平行四边形、三角形和梯形之间的联系
用图表示出来。
(1) 学生画图:
(2)从图上可以看出,谁的面积是基础?
4、(1)练习做期末复习第14题。
学生计算后反馈。
(2)填空:
①一个三角形和一个平行四边形等底等高,如果三角形的面积是60平方米,那么平行四边形面积是( )平方米;如果平行四边形面积是60平方米,那么三角形的面积是( )平方米。
②一个三角形底不变,高扩大3倍,面积( )倍。
③一个平行四边形底扩大16倍,高缩小2倍,面积就( )倍。
(3)应用题练习,期末复习第15题。
注意第(2)题单位不统一,先统一单位后再解答。
四、复习土地面积单位
1、(1)计算土地面积常用的单位有哪些?
(2)1平方千米,1公顷各有多大?
(3)测量土地时,一般用什么作长度单位?算出面积是多少平方米后,再换算成公顷或平方千米。
2、应用题:
(1)一个平行四边形果园,占地3公顷,它的底是400米,高是多少米?
学生做完后,师问:这题要注意什么?
(2)一个梯形的小麦田,上底长200米,下底长400米,高600米,它的面积是多少公顷?如果每公顷收小麦6000千克,这块小麦田能收小麦多少吨?
反馈时,说明最后结果单位要统一成吨。
3、综合练习:做期末复习第13题。
在书上做并说明理由。
五、全课总结
这节课复习了什么内容?我们复习了面积计算。进一步知道通过图形的转化,可以推导出平等四边形、三角形和梯形的面积计算公式,并且按它们面积计算公式可以分别计算出这些图形的面积是多少。
【作业设计】
补充
1、判断:
(1)两个完全一样的直角三角形能拼成平行四边形。( )
(2)两个面积相等的三角形一定等底等高。 ( )
(3)62=62=12。 ( )
(4)40公顷4平方千米。( )
2、一块平行四边形棉田,底400米,是高的2倍,共收籽棉8000千克,平均每公顷收籽棉多少克?
3、体育组跳箱的一面是梯形,它的上底是8分米,下底是1米,高11分米。求这个梯形的面积是多少平方分米?



